
RSL-III-2D Local Seismic Response: Theoretical background 

 

 

RSL-III-2D Local Seismic Response 

Theoretical Backround 

 

1. Introduction and Equivalent Linear Elastic Approach (ELA) 

RSL-III-2D is a finite element system for seismic analysis of soils and structures. A two 

dimensional nonlinear (linear equivalent model) including the superstructure (liners, frames) 

finite element computer program has been developed (RSLIII-2D).

 

The soil domain is 

analysed under the assumption of of plane strain condition. The materials in the various 

layers of the soil domain are modeled using the equivalent linear model (ELA). Basic idea of 

ELA is to solve the non-linear problem using linear analysis with a reduced secant stiffness, 

so that ELA can simulate the response at the cycle of the largest amplitude. To obtain the 

proper stiffness the linear analysis is repeatedly solved until the stiffness and the maximum 

shear strain response at each layer satisfy the material relationship between stiffness and the 

shear strain (namely, G- curve). Therefore ELA well simulates the response for the 

maximum magnitude cycle.

 

 

Figure 1: Concept of ELA 
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Nevertheless, the response of the other cycle has error to the response of the NLA since 

stiffness used is the stiffness at the largest amplitude. The lateral and base boundary 

conditions for the computational soil domain are modeled using a modified Lysmer‐

Kuhlemeyer transmitting/absorbing boundary. A set of viscous normal and tangential to the 

soil boundaries can be used to implement these transmitting boundaries.  

 

The Equivalent Linear analysis basically cycles through the entire earthquake record in an 

attempt to establish the correct the soil stiffness (G-secant shear modulus). During each pass 

through the earthquake record the peak cyclic shear strains are noted in each element. The 

soil stiffness (G) is then modified based on the peak cyclic shear strains. Once G has been 

adjusted, the entire process is repeated. Generally, five-to-ten iterations through the 

earthquake record is adequate to establish appropriate G values for each element. The 

number of iterations can be controlled with a user specified parameter. The default value in 

RSL-2D is set to 10 (ten) iterations.  

When subject to a cyclic load, the soil usually exhibits a non-linear hysteretic stress-strain 

behaviour that can be approaximated with equivalent linear soil properties, such as secant 

shear modulus G and the damping ratio ξ which represent the inclination and the width of of 

the hysteretic loop respectively. According to the linear approach, G and ξ are constant for 

each soil element starting from the initial estimated values, they are updated in subsequent 

iterations to be consistent with the level of strain induced in each finite element. The 

procedure can be summarized as follows: 

1. Initialize the values of G(i) and ξ(i) at their small strain values. 

2. Compute the ground response, and get the amplitudes of maximum shear strain γmax from 

the time-histories of shear strain in each soil finite element. 

3. Determine the effective shear strain as:  
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where Rγ is the ratio of the effective shear strain to maximum shear strain, which depends 

on the earthquake magnitude and is the same for all soil finite elements. The default value 

in RSL-III-2D is set to 0.65.

 

4. Calculate the new equivalent linear values G(i+1) and ξ(i+1)  corresponding to the effective 

shear strain computed at step 3.  

5. Repeat the iterations until the differences between the computed values of the shear 

modulus and damping ratio in two successive iterations is less than a specified error in all 

soil elements. 

2. General time-history analysis algorithm 

The finite element method allows irregular mesh with elements having different sizes and 

geometries to be used therefore it is very useful for modeling complex geometry and 

boundary conditions. The governing motion equation for dynamic response of a system can 

be expressed as: 

 

                                                (2) 

 

where M is mass matrix, C is damping matrix, K is stiffness matrix, F is vector of loads (see 

section 2.3 of the present manual), ü is nodal acceleration vector, u is nodal velocity vector, 

u is nodal displacement vector assembled for the entire structure. Damping term is usually 

defined for each finite soil element as a linear combination (Rayleigh) of mass (m) and 

rigidity (k) as below. 

 

                                                                kmc                                                           (3) 

where α and β are constant determined for each finite element as follows. The use of 

Rayleigh damping in this manner results in a frequency dependent damping applied to the 

system, with  
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where ω represents the natural circular frequency of the structures. Using this criterion one 

posbility to define the constants α and β is: 
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where ω1 represents the fundamental circular frequency of the structure (first mode of 

vibration). Such an approach is defined in the RSL-III-2D by means of chosing Single 

Frequency in Damping definition. Another definition for constants α and β are as follows: 
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where ω2 represents the second frequency of the system  

                                                                    
12  n                                                             (7) 

where n is an odd integer. Such an approach is defined in the RSL-III-2D by means of 

chosing Double Frequency in Damping definition and defining a value for n_Damping on the 

analysis panel. 

 

Remark: The fundamnetal frequency of the system (soil structure) ω1 is internally calculated 

by the program solving the following eigen value problem:  

                                                                 0MK  1

2

1                                                     (8) 

where the first mode shape of vibration is Φ1. It is important to note that the eigen value 

problem, stated above, is solved considering the boundary conditions of the structures 

associated to Stage 1 of the model definition where the classical fixed boundary conditions 

are considered. Furthermore, the user has the option to refine this approach by means of 

computing the eigen values during each iteration within the framework of Equivalent Linear 

Analysis approach summarised above. 

 

In order to solve the Eq. (2) a direct integration method is applied in time domain. Time 

stepping is achieved using a direct Newmark method  involving time-stepping parameters β 

and γ, the values of which determine the accuracy and stability characteristics of the 



RSL-III-2D Local Seismic Response: Theoretical background 

 

algorithm. For the special case, adopted in the program RSL-III-2D, the method is identical 

to Crank-Nicolson method (Figure A): 
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Figure A: Crank-Nicholson algorithm 

 

2.1 Absorb and transmitting boundy conditions 

In order for a 2D finite element finite domain to represent the response of an infinite field 

condition, the artificial reflection of seismic waves from side boundaries as well as from the 

underlying half-space (bottom part of the finite element model), should be minimized. The 

absorb and transmit boundary conditions provide the line segment with what is sometimes 

called a Lysmer‐Kuhlemeyer (L-K) dashpot boundary. It is an artificial boundary condition 
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that attempts to reproduce the infinite boundary behavior of the soil medium. It is important 

however to note that the effects of side boundaries can be readily minimized by increasing 

the extent of teh finite element mesh. That is to say that the absorb and transmit boundary 

absorb incoming shear and pressure waves as if the model was not actually bounded. The 

assumption of these boundaries is that the waves present in the system will propagate 

according to the soil material's shear and pressure wave velocities. The boundary therefore is 

constructed from two dampers at the external boundary, one perpendicular and the other 

tangential to the boundary orientation, whose damping coefficient is proportional to the wave 

velocities. The absorbent effect of soil layers and bedrock lying at the vertical and horizontal 

boundaries of the finite element model can be taken into consideration by putting viscous 

dashpots. Dashpot coefficients are proportional with the pressure and shear wave values of 

the relevant soil layers at the boundaries of 2D model. The implementation of these dampers 

involves adding damping at each of the nodes that make up the base and lateral sides if the 

finite element model. To mathematically implement these dampers, the parts of the 

applicable element matrices have the transmitting boundary damping term added to the 

diagonal terms in daming matrix of the structure. This produces an adjustable force in the x 

and y dirrection proportional to the velocity of the specified nodes. The coefficients used for 

absorbing P and S waves added on the diagonal terms of the damping matrix are obtained as: 
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Here cp and cs are damping coefficients that are used to absorb the energy of P (for dirrection 

perpendicular to boundary) and S (dirrection parallel to boundary) waves. Vp and Vs are P 

and S wave velocity of the relevant soil layers, ρ is the density of layers and L (tributary 

width of the node) is that length corresponding to half of the distance to the next node on both 

sides.  

Remark 1: In case the base of the model is fixed with restraints in both directions and 

especially when studied with strong ground motion acceleration which cause nonlinear 

behavior of the soil layers, the soil amplifications at the surface layers may reach to 

unrealistic high values during the numerical analyses. For this reason, viscous dashpots in 

two directions should be put at the base boundary of the model.  
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The wave velocities are calculated using the following equations: 
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Figure 2: Damping coefficients. Absorb boundary conditions. 

If an absorb or transmit boundary is applied on a line segment that borders elements with 

different material properties, an average value for modulus and density will be used in the 

damping coefficient computations.  

Remark: At each node along the base and lateral boundaries of the soil domain, a horizontal 

dashpot is set to transmit the shear waves at the base and compressive waves at the lateral 

boundaries respectively. The horizontal coefficient of the dashpot at the base is ρVsL and the 

vertical coefficient is ρVpL, while that of dashpot on the lateral boundaries are ρVpL for 

horizontal direction and ρVsL for vertical direction where ρ, Vs, Vp denote the mass density, 

shear wave velocity and compressive wave velocity, respectively, of the soil material outside 

the boundary (i.e. bedrock) and L si the tributary length of the corresponding node. 

 

2.2 Definition of seismic input  

Input of an earthquake motion in RSL III 2D may be defined according with the definition of 

the base of the model. There are two typical cases (Fig. 3): 

(a) A rigid base, the bedrock is explicitly modelled and an acceleration time history is 

specified at the base of the model; 
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(b) A compliant base, where a quiet (absorbing) boundary is used at the base of the model, 

and as a consequence, the bedrock is replaced with a dashpot and equivalent force, which 

defines the seismic input at the base of the computational soil domain.  

   

 

 

 

 

 

Figure 3: Seismic input and modelling: (a) Rigid base: explicit modelling of bedrock, 

prescribed vertical displacement and prescribed acceleration; (b) Compliant base: 

Bedrock replaced with dashpot (absorbing boundary) and equivalent seismic force. 

 

2.2.1 Rigid base 

When a rigid base is used (First approach) the seismic input is defined in terms of prescribed 

acceleration applied in the horizontal dirrection along the base of the bed-rock soil domain 

included in the finite element model (Additional Mass Method option as selected in the RSL-

III-2D in the analysis panel-Figure 4).  

 

Figure 4: Seismic input for Rigid base modelling. 

According to this approach [1] the response of the structure subjected to base excitation can 

be obtained by adding large masses along the horizontal degrees of freedom of the nodes at 

 
 

(a)-Rigid base (b)- Compliant base 
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the bottom of the bedrock and by applying a force vector in the dirrection of mentioned 

degrees of freedom: 

                                                              tutF g

a

g

..

M                                                           (12) 

where a

gM represents the diagonal matrix with consists with large values (penalty values 

defined in RSL-III-2D)  added to the diagonal terms of the soil mass matrix along the degrees 

of freedom with prescribed accelerations and  tug

..

 is the recorded ground acceleration time 

series. 

 

 

Figure 4: Dynamic modelling for rigid base 

Remark 1: When this approach is selected the bed-rock region has to be modelled in the 

finite element model.   

 

Bedrock 

Dashpots on both vertical 

and horizontal dirrections 

Prescribed displacements 

to zero (red arrows) 

Prescribed time-history accelerations 

(earthquake)-green arrows 
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2.2.2 Complaint base 

When a compliant base (transmitting/absorbing base) is used, the input motion is a function 

of the material properties of the half-space below the finite element mesh (bedrock region), 

and the properties and geometry of the mesh. As we stated above on each node at the base 

and on the lateral boundaries of the soil domain are defined dashpots normal and tangential 

to the boundary respectively. This represent the lateral boundary condition when the input 

motion represents an outcrop acceleration, recorded at an outcrop of the half-space material. 

For a compliant base simulation an absorbing boundary must be specified along the base of 

the model by means of using the viscous boundary scheme as detailed in section 2.1 of the 

present manual. These dashpots of the quiet bounday absrob downward propagating waves 

so that they are not reflected back into the model. At these boundaries an acceleration time 

histroy cannot be inout directly (as in the previous case of Rigid base) because the boundary 

must be able to move freely to absorb incoming waves. The acceleartion-time history is 

transformed into a stress-time history for input. In this approach the seismic input is defined 

in terms of equivalent nodal forces (or effective earthquake forces), which are proportional 

to the velocity of the incident wave, applied in the horizontal dirrection along the base of the 

soil domain included in the finite element model (Equivalent force option as selected in the 

RSL-III-2D in the analysis panel-see Fig. 5).  

 

Figure 5: Seismic input for Compliant base modelling. 

This outcrop input is applied as a shear force history, F(t), as shown in Fig. 6. This creates an 

incident wave that is reflected back into the soil domain at the surface. The already 
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mentioned dampers sown in Fig. 2 absorb the reflected wave simulating an infinite soil 

domain: 

                                                               tAvVtF s                                                         (13) 

where ρ is the density of the bedrock, Vs represents S wave velocity of the bedrock, v(t) 

represents the seismic velocity excitation from the earthquake acceleration and A represents 

the tributary area associated to the loaded node.  

 

Figure 6: Compliant base: Definition of the seismic input. Equivalent force approach. 

 

 
Figure 7: Dynamic modelling for compliant base 

Dashpots on both vertical 

and horizontal directions 

on vertical planes 

Dashpots on both vertical 

and horizontal directions 

on base of the model 
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Figure 8: Seismic input for compliant base. 

Remark 1: A direct approach to acquiring the velocity from the earthquake acceleration by 

assuming zero initial conditions is applied. The velocity time series are determined as: 

                                                               dutv
t

g 0

..

                                                         (14) 

where  
..

gu  is the recorded ground acceleration time series (out-crop acceleration). The 

acceleration data is baseline-corrected using the least-square curve fitting technique in order 

to reduce the drift in velocities and displacements. 

Remark 2: When this approach is selected by the user the bed-rock region is not necessary to 

be modelled. The seismic input will be defined at the bottom nodes of the model taking into 

account only the material properties of the bed-rock as stated above. Besides the vertical 

supports along the base line may be completely eliminated and replaced with the equivalent 

reactions as will be briefly described at the point 2.3 of the present manual. 

 

2.3. Gravity and dynamic analysis. Modelling. 

A rigurous dynamic analysis is preceded by a static garvity analysis within a stage-wise 

procedure as will be briefly described next. In order to set-up the model such that both 

gravitational and dynamic behaviour of the soil to be revealed, we need to proceed in several 

steps to apply the static and dynamic boundary conditions.  

Prescribed time-history equivalent 

forces (green arrows) 
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Stage 1-Gravitational analysis 

First we fix the base and lateral boundaries of the soil domain, set the various soil 

constitutive models to be linear elastic and apply gravity (Stage 1 in the RSL-III-2D). The 

base is restrained in both horizontal and vertical dirrections, the vertical boundaries are 

restrained only in the horizontal dirrection and are kept free in the vertical dirrection. The 

material of the soils is considered to behave elastically and the gravity loads are applied. The 

state of strain a and stress are determined and also an eigenvalue analysis is perfromed in 

order to determine the dynamic charcatersitics of the model (see Remark of the section 2 of 

the present manual). 

Table 1: Boundary conditions-Stage 1 

Rigid base Compliant base 

  

 

Stage 2-Dynamic analysis 

In the second step, all the displacement constraints along the boundaries of the soil domain 

are removed and replaced with the corresponding support reactions (Table 2)  recorded at the 

end of the first step-stage 1 (Insert Support Reactions option in the RSL-III-2D in the 

analysis panel-See Fig. 5).  

Table 2: Boundary conditions (Reactions)-Stage 2 

Rigid base Compliant base 

 
 



RSL-III-2D Local Seismic Response: Theoretical background 

 

Table 3: Boundary conditions(dashpots) -Stage 1 

Rigid base Compliant base 

  

After balancing the internal and external forces, dashpots in both the horizontal and vertical 

dirrections are added to the lateral boundaries of the soil domain to model the L-K 

transmitting boundaries discussed above (Table 3). For the rigid base at the base of the model 

prescribed displacements to zero are applied in order to restrain the vertical dispacement. For 

the compliant base along the base of the model L-K boundaries are asigned in the horizontal 

as well in the vertical dirrections.  

Once the boundary conditions have been succesfully applied, the model is subjected to 

seismic excitation that is applied either as prescribed time-histroy acceleration in the case of 

rigid base or in the form of equivalent nodal forces defined earlier (Stage 2 in the RSL-III-

2D). In both situations the equation of motion may be described as in Eq. 15:                                                            

                                                        vt FFuKuCuM 
...

                                             (15) 

where M is mass matrix, C is damping matrix, K is stiffness matrix, ü is nodal acceleration 

vector, u is nodal velocity vector, u is nodal displacement vector assembled for the entire 

structure, F(t) represents the input nodal force vector defined either as in Eq. (12) for rigid 

base or as in Eq. (13) for compliant base, Fv is the force vector assigned at viscous 

boundaries during the gravity analysis (reactions  recorded at the end of the first stage). 

3. Material properties 

The dynamic soil properties that are needed in a ground response analysis are the small strain 

shear and normal wave velocity, Vs and Vp, shear modulus at low strain, Gmax, and G/Gmax–

eff and ξ– eff curves describing the degradation of soil shear stiffness and damping with 
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increasing amplitude of the effective shear strain, eff  (marked in red boxes in Fig. 4). Here ξ 

repressnts the damping ratio used in the computation of the damping matrices for each soil 

finite element. The shear modulus, G (G0 in the RSL-III-2D), can be determined from the 

measured shear wave velocities, Vs, i.e., 

                                                            gVG ss /2                                                            (16) 

where, γs, is soil unit weight. Young’s modulus can be then determined from the following 

relationship: 

                                                             12GE                                                          (17) 

where υ represents the Poissons’s ratio. The G/Gmax– eff and ξ– eff curves describing the 

degradation of soil shear stiffness and damping can be selected from the Material properties 

panel in RSL-III-2D program as described in Fig. 4. The stiffness degradation curve of the 

soil layers and the change in damping ratio with cyclic shear strain is illustrated in Fig. 5. 

 

Figure 4: Material properties for dynamic analysis. 

 

 

Figure 5: Stiffness degradation and damping ratio curves for soils. 

Remark 1: The Rayleigh mass and stiffness parameters together with the damping ratio 

marked in blue boxex in Fig. 4 are required only when an Linear Dynamic Analysis with 

variable damping is selected to be performed. 
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Remark 2: It is important to pay attention at the correspondence between the elastic 

constants and wave velocities that defines the behaviour of soils. Eqs. (11) and (16)-(17) 

shows such a relationships. 

 

4. Main results: response spectrum for an earthquake 

The response spectrum is calculated in any node of the mesh as the response of a SDOF 

systems in terms of accelerations, characterized by different stiffness k but same damping 

ratio ξ and subjected to the same earthquake. The information about the “structure” stiffness 

k is related with the natural period T reported on the X-axis of the response spectrum (Fig. 6). 

A direct integration of the equation of motion for a SDOF system is generaly used to 

compute the maximum acceleration for different SDOF systems for determining the response 

spectra. In the RSL-III-2D is implemented the exact integration method of piecwise linear 

functions [1]. This approach could be considered exact since the acceleration time-history 

obtained in the selected node is defined at regular time intervals and the linear interpolation 

is used between the data points. The procedure takes into account the fact that the 

acceleration time-history were obtained at regular time intervals ∆t. The input data consists 

of the acceleration time history with duration tf, the time interval ∆t, the range for which the 

spectrum is to be computed (the response spectra are computed for periods of structure 

between 0.01s ans 10s  on logarithmic scale) ten number of spectral values to calculate and 

the damping ratio (Fig. 6). 

 

Figure 6: Response spectrum
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